skip to main content


Search for: All records

Creators/Authors contains: "Yakovenko, Andrey A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 14, 2025
  2. Abstract Temperature limitations in nickel‐base superalloys have resulted in the emergence of SiC‐based ceramic matrix composites as a viable replacement for gas turbine components in aviation applications. Higher operating temperatures allow for reduced fuel consumption but present a materials design challenge related to environmental degradation. Rare‐earth disilicates (RE 2 Si 2 O 7 ) have been identified as coatings that can function as environmental barriers and minimize hot component degradation. In this work, single‐ and multiple‐component rare‐earth disilicate powders were synthesized via a sol‐gel method with compositions selected to exist in the monoclinic C 2/ m phase ( β phase). Phase stability in multiple cation compositions was shown to follow a rule of mixtures and the C 2/ m phase could be realized for compositions that contained up to 25% dysprosium, which typically only exists in a triclinic, P , phase. All compositions exhibited phase stability from room temperature to 1200°C as assessed by X‐ray diffraction. The thermal expansion tensors for each composition were determined from high‐temperature synchrotron X‐ray diffraction and accompanying Rietveld refinements. It was observed that ytterbium‐containing compositions had larger changes in the α 31 shear component with increasing temperature that led to a rotation of the principal axes. Principal axes rotation of up to 47° were observed for ytterbium disilicate. The results suggest that microstructure design and crystallographic texture may be essential future avenues of investigation to ensure thermo‐mechanical robustness of rare‐earth disilicate environmental barrier coatings. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. Abstract

    Purification of C2H4from an C2H4/C2H6mixture is one of the most challenging separation processes, which is achieved mainly through energy‐intensive, cryogenic distillation in industry. Sustainable, non‐distillation methods are highly desired as alternatives. We discovered that the fluorinated bis(pyrazolyl)borate ligand supported copper(I) complex {[(CF3)2Bp]Cu}3has features very desirable in an olefin–paraffin separation material. It binds ethylene exclusively over ethane generating [(CF3)2Bp]Cu(C2H4). This molecular compound exhibits extremely high and record ideal adsorbed solution theory (IAST) C2H4/C2H6gas separation selectivity, affording high purity (>99.5 %) ethylene that can be readily desorbed from separation columns. In‐situ PXRD provides a “live” picture of the reversible conversion between [(CF3)2Bp]Cu(C2H4) and the ethylene‐free sorbent in the solid‐state, driven by the presence or removal of C2H4. Molecular structures of trinuclear {[(CF3)2Bp]Cu}3and mononuclear [(CF3)2Bp]Cu(C2H4) are also presented.

     
    more » « less
  4. Abstract

    Purification of C2H4from an C2H4/C2H6mixture is one of the most challenging separation processes, which is achieved mainly through energy‐intensive, cryogenic distillation in industry. Sustainable, non‐distillation methods are highly desired as alternatives. We discovered that the fluorinated bis(pyrazolyl)borate ligand supported copper(I) complex {[(CF3)2Bp]Cu}3has features very desirable in an olefin–paraffin separation material. It binds ethylene exclusively over ethane generating [(CF3)2Bp]Cu(C2H4). This molecular compound exhibits extremely high and record ideal adsorbed solution theory (IAST) C2H4/C2H6gas separation selectivity, affording high purity (>99.5 %) ethylene that can be readily desorbed from separation columns. In‐situ PXRD provides a “live” picture of the reversible conversion between [(CF3)2Bp]Cu(C2H4) and the ethylene‐free sorbent in the solid‐state, driven by the presence or removal of C2H4. Molecular structures of trinuclear {[(CF3)2Bp]Cu}3and mononuclear [(CF3)2Bp]Cu(C2H4) are also presented.

     
    more » « less